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ABSTRACT

This grant began in June of 1996. Its long term goal is to be able to control the
microstructure of directionally solidified eutectic alloys, through an improved understanding of
the influence of convection. The primary objective of the present projects is to test hypotheses
for the reported influence of microgravity on the microstructure of three fibrous eutectics (MnBi-
Bi, InSb-NiSb, AI3Ni-Al). A secondary objective is to determine the influence of convection on
the microstructure of other eutectic alloys.

Two doctoral students and a masters student supported as a teaching assistant were
recruited for this research. Techniques were developed for directional solidification of MnBi-Bi
eutectics with periodic application of current pulses to produce an oscillatory freezing rate.
Image analysis techniques were developed to obtain the vartation in MnBi fiber spacing, which
was found to be normally distributed. The mean and standard deviation of fiber spacing were
obtained for several freezing conditions. Eighteen ampoules were prepared for use in the
gradient freeze furnace QUELD developed at Queen’s University for use in microgravity. Nine
of these ampoules will be solidified soon at Queen’s in a ground-based model. We hope to
solidify the other nine in the QUELD that is mounted on the Canadian Microgravity Isolation
Mount on MIR.

Techniques are being developed for directional solidification of the Al-Si eutectic at
different freezing rates, with and without application of accelerated crucible rotation to induce
convection.

For the first time, theoretical methods are being developed to analyze eutectic
solidification with an oscillatory freezing rate. In a classical sharp-interface model, we found
that an oscillatory freezing rate increases the deviation of the average interfacial composition
from the eutectic, and increases the undercooling of the two phases by different amounts. This
would be expected to change the volume fraction solidifying and the fiber spacing. Because of
difficulties in tracking the freezing interfaces of the two solid phases, a phase-field model is also
being developed. A paper demonstrating application of phase field methods to periodic
structures has been submitted for publication.



INTRODUCTION

Prior experimental results on the influence of microgravity on the microstructure of
fibrous eutectics have been contradictory [reviewed in 1,2]. Theoretical work at Clarkson
University showed that buoyancy-driven convection in the vertical Bridgman configuration is not
vigorous enough to alter the concentration field in front of a growing eutectic sufficiently to
cause a measurable change in microstructure [3-9]. Currently, there are three hypotheses that
might explain the observed changes in microstructure of fibrous eutectics caused by convection:

1. A fluctuating freezing rate, combined with unequal kinetics for fiber termination and
branching.

2. Off-eutectic composition.

3. Presence of a strong habit modifying impurity.

We favor the first of these hypotheses. Previously we had performed ground-based experiments
using electric current pulses to deliberately create an oscillatory freezing rate [1,2]. Although
current pulsing coarsened the microstructure of MnBi-Bi eutectic as predicted, it may also have
introduced localized convection. Current pulsing experiments in microgravity are needed to
fully test this hypothesis.

Experimental and theoretical research is being carried out in collaboration with Professor
Reginald Smith of Queen’s University. He is a senior metallurgist with extensive experience in
eutectic solidification, including the two systems being investigated here: MnBi-Bi and Al-Si.
Through the support of the Canadian Space Agency, he has two automated furnaces located in
the Canadian Microgravity Isolation Mount (MIM), in Prirorda on Mir. MIM can be used not
only to greatly reduce acceleration, it can also be used to introduce accelerations of any desired
amplitude, frequency and direction. Recent experiments have shown unexpected sensitivity of
diffusion to normal microgravity g-jitter [10,11]. Thus it would be very instructive to perform
eutectic solidification experiments in microgravity with controlled accelerations applied, either
using MIM or McDonnell-Douglas’s STABLE.
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THE INFLUENCE OF A FLUCTUATING FREEZING RATE ON DIRECTIONAL
SOLIDIFICATION OF THE MnBi/Bi EUTECTIC
Fengcui Li

Abstract

The objective of this project is to determine the effect of a fluctuating freezing rate on the
microstructure of the MnBi/Bi eutectic. It was planned that this would be done via both space
experiments and ground-based experiments. The space experiments were to be carried out in
collaboration with Professor Reginald Smith of Queen’s University. Through the support of the
Canadian Space Agency, he has two automated furnaces located in the Canadian Microgravity
Isolation Mount (MIM), in Prirorda on Mir. At Clarkson, ground-based experiments are being
performed with a fluctuating freezing rate caused by passing periodic electric current pulses
through the material. Experiments will be carried out soon at Queen’s University using
duplicates of the flight samples in a copy of the flight furnace, QUELD. Eighteen special small
diameter ampoules were prepared and delivered to Professor Smith. Because of the many
problems with Mir, flight of our experiments is now awaiting the negotiation of a new agreement
between the Canadian Space Agency and the Russian government.

The eutectic microstructure is photographed using Scanning Electron Microscopy (SEM),
and the microstructure images analyzed by special image analysis software that we do not believe
has been used before in such an application. The result is a histogram of the distribution of
nearest neighbor MnBi rod spacings. Cumulative distribution plots demonstrate that this rod
spacing is normally distributed.

A draft research proposal by Ms. Li for her PhD qualifying examination is nearly
complete. There has been an introductory meeting with the examining committee.

INTRODUCTION

The MnBi/Bi eutectic has potential for use in the production of permanent magnets. It
provides a fine dispersion of ferromagnetic MnBi embedded in a diamagnetic Bi matrix. Regular
arrays of MnBi rods are aligned with their easy axis of magnetization parallel to the growth
direction in the Bi matrix. Moreover, MnBi/Bi eutectic is considered a useful model system to
study the crystal growth, because its microstructure and magnetic properties strongly depend on
the solidification parameters.

The average MnBi fiber spacing A depends on the freezing rate V such that A’V = const.
In the 1980’s, Larson and Pirich at Grumman found that A of MnBi/Bi solidified in microgravity
was reduced to about half the value when it is solidified on earth [reviewed in 1,2]. However, a
more recent flight experiment by Smith showed no influence on the microstructure of MnBi/Bi
eutectic. Previous investigations here showed that the influence of buoyancy-driven convection
and the Soret effect on mass transport are not enough to explain the difference between the earth-
and space-processed [3-9]. We proposed that freezing rate fluctuations caused by irregular
convection increased A on earth because MnBi fibers are terminated more easily than they
branch. We also proposed that the difference between the results of Larson and Smith resulted
from the different temperature profiles of their experimental apparatuses. The thermally unstable
condition of Larson’s furnace is believed to have caused time-dependent convection, temperature
fluctuations and freezing rate fluctuations. (They observed temperature fluctuations via
thermocouples in the melt.) Smith used a thermally stable gradient-freeze furnace.
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The objective of the current project is to experimentally determine the influence of a
fluctuating freezing rate on the microstructure of the MnBi-Bi eutectic. Ground-based
experiments are being performed at Clarkson using periodic electric current pulses applied
during solidification. Electric current pulsing is a good technique to cause rapid freezing rate
fluctuations, hopefully with minimum changes to the convection. In preliminary experiments,
we demonstrated that the MnBi fiber spacing increased as both the current amplitude and
duration were increased at one particular freezing rate [1,2]. We are now investigating a range of
freezing rates and current pulsing conditions.

We plan to perform experiments soon at Queen’s University on a duplicate of the
QUELD gradient-freeze apparatus that is located on the Canadian Microgravity Isolation Mount
(MIM) on Mir. Perturbations will be induced in some of the 9 experiments by orienting the
apparatus horizontally during solidification or by periodically striking the apparatus. Ultimately,
we hope to perform solidification experiments on MIM in space, under three conditions: without
vibration damping, with vibration damping, and with known oscillations applied by MIM.
(Diffusion studies have shown that g-jitter on the Shuttle and on MIR are sufficient to increase
the apparent diffusion coefficient compared to the vibration-damped condition [10,11].) The
problems on MIR have prevented our samples from being run, and we must now await the
negotiation of a new agreement between the Canadian Space Agency and the Russian authorities.

EXPERIMENTAL METHODS, RESULTS AND PLANS

Current pulsing experiments

The experimental procedure is as follows. The ampoules used for homogenization are 9
mm IDx 11 mm OD quartz tubes sealed by 8 mm OD quartz rods on both ends. The ampoule
was alternately evacuated to 10°° torr and filled with a mixture of argon and 10% hydrogen, and
then sealed at 10 torr. The eutectic was homogenized in the gold-coated rocking furnace at
670°C for 36 hours.

The growth ampoules are 4 mm ID X 6 mm OD quartz tubes (with 9 mm ID X |1 mm
OD top parts), and 900 mm long in order to fit the furnace. Molybdenum wire is used to carry
the electric current for the current pulsing experiments since it is not soluble in bismuth. The
charge is about 20 g, and the ingot length is about 15 cm.

A Bridgman-Stockbarger furnace is used for the solidifications. The temperature in the
hot zone is set at 650°C and the cold zone at 250°C. A current amplitudes of about 0, 1, 5 and 9
A is used, i.e. 8.0, 40 and 72 A/cm®. The period is 2s, 6s or 40s. The duration time is about
12.5%, 25% and 50% of the period time. Some experiments are performed either with no current
or with current applied continuously. The translation rate, which is approximately the freezing
rate, is 1, 2 or 5 cm/hr. For most ingots, no current is used during the first 6 cm, 9 A for 3 cm,
5A for 3 cm and 1A for 3 cm. Ampoules successfully solidified to date are shown in the table at
the end of this section.

Each ingot is cut into 8 mm thick cross sections, which are mounted in epoxy, ground,
polished and etched. The microstructure is recorded as computer files using scanning electron
microscopy. For each sample, 20-25 images from different positions of the sample are saved and
subsequently analyzed by HLImage++ 97 software. By the Threshold and Blob Analyse
command, the edge between the rods and the matrix are found. Some images are not sharp
enough and are fixed manually using the image software. Each rod area and center coordinates
are obtained automatically by the computer. The results are exported to Excel. The rods are
sorted from largest to smallest. There are four items in the Excel table for each rod: its



identification number, area, and coordinates of its center. The distance of its center to that of the
nearest rod is calculated and stored. The average nearest-neighbor spacing is calculated and
defined as the rod spacing A, along its standard deviation and total fraction of the area occupied
by MnBi fibers (area fraction). The nearest-neighbor values are used to generate a frequency
histogram, as illustrated in the graph shown later. The cumulative distribution is tested for
normalcy by a plot of nearest neighbor distance versus the standard normal cumulative
distribution function NORMSINV. A straight line, as illustrated in the graph on the last page of
this section, indicates that the nearest neighbor distance is normally distributed. The 50% value
on this plot is A and the slope is the standard deviation.

QUELD experiments

The Queen’s University flight furnace, QUELD, is a gradient freeze furnace designed to
hold one sample. The control temperature is lowered at a specified rate to cause directional
solidification. Eighteen ampoules were prepared for use with QUELD, 9 for ground-based
experiments and 9 for flight experiments. Each ampoule is 3 mm ID x5 mm OD and 60 mm
long quartz tube, with its two end sealed by fusing in quartz rods. These 18 ampoules were
delivered to Professor Smith and we are now collaborating with him on selection of the
conditions for the 9 ground-based experiments. We believe some will be run vertically in a
thermally stable environment, and some horizontally to cause convection and a fluctuating
freezing rate. We are considering periodically tapping the furnace in order to cause the freezing
rate to fluctuate. This could be done either manually or by using a rotating cam or solenoid.



Overview of the experiments

No. EX1 EX2 EX3 EX4 EXS5 EX6 EX7
Charge(g) | 40.0 50.0 17.0 22.1 22.0%* 20.8** 22, 1%*
Cun(Wt%) 0.726 0.737 0.721 0.738 0.730 0.738 0.738
Ampoule 91D 91D 41D 41D 41D 41D 41D
size (mm) | 110D 11 OD 6 OD 6 0D 6 OD 6 OD 6 OD

Ingot length 6.8 8.8 12,0 leaked 18.0 17.3 18.2

(cm) oxidized
Soak time 3.25 3.50 2.50 2.50 2,75 3.30 4.50

(hr)

Translation 1.88 1.92 - 6.75, 2.0 2.10 2.14 4.36

rates 4.09,

(cm/hr) 2.07,0.83
Current No No No 1=9A 1=0,9,511=0,51,{1=0,9,5,
settings™® current current current t=1s 1A; 9A; 1A
T=2s t=0.75s; | t=ls; t=0.5;
T==6s T=2s T =2s;
constant
SA
SEM Yes Yes Yes
analysis
Area 3% 3% 3.0,2.7,
Fraction 4.5,5.6%
Average 4.6 4.5
A(um)
Standard 1.51um 1.02um
deviation

* I: current amplitude

t: current duration time T period of the current pulses

** The charge was a 3mm OD ingot that had been solidified in a 3mm ID X 5mm OD quartz tube.

Explanation of the experiments

No.

Explanation

EX3

The crystal was solidified in four translating rates. The ingot lengths were 4.5, 3.0, 3.0,
2.0cm,

EXS

The crystal was solidified in five conditions. First 4cm long was grown without current
pulses. Then 1=3.5cm at each current pulses. The last 3.3cm without current

EX6

I=4.6cm with I=5A; [,=2.4cm no current;
1,=3.7cm with I=1A; L1=2.2cm without current;
1s=3.8cm with I=9A;

The last part was solidified without current

EX7

1;=3.3cm no current; L,=3.4cm with I=9A:
1,=3.2 with I=5A; L,=3.2cm with I=1A;
15=2.8cm with [=5A constant current;

The last part was solidified without current




Histogram result of EX2

(There were 5201 rods)
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MODELING OF EUTECTIC SOLIDIFICATION
WITH A FLUCTUATING FREEZING RATE
Dmitri Popov

Abstract

It was proposed in [1,2] that the kinetics of fiber branching differs from that for fiber
termination. This could explain why the fiber spacing A is different when solidification is carried
out without freezing rate fluctuations caused by buoyancy-driven convection. The objective of
this project is to develop a theoretical model for the influence of freezing rate oscillations on
eutectic microstructure. We are unaware of any previous work in this area. Two different
numerical models were chosen to solve the problem:

One-sided model. This method is based on the solution of thermal and mass diffusion equations
separately in each phase and sewing the solution at the interface by appropriate boundary
conditions resulting from flux conservation. The equations in the bulk can be easily discretized
even in a very complicated geometry. The interfacial free energy cannot be calculated from the
model, but is formulated in the model ab initio. In this case, the dynamics of the interface is
controlled only by the change of field variables in the bulk, but not at the interface itself. A
fluctuating freezing rate was applied. The coordinate system was transformed to one moving
with the interface. The excess compositional undercooling was calculated for several eutectic
structures. It was found that the stationary solution always exists. The concentration at the
interface, averaged in the Jackson-Hunt fashion, oscillates with the same frequency as the growth
rate, but lags behind for sufficiently high frequencies. The frequency dependence of the average
compositional undercooling reveals a high-frequency cut-off, where it approaches the steady-
state value. The value of the high-frequency cut-off is proportional to the inverse diffusion time
connected with the lateral diffusion. The value of the liquidus slope at the eutectic point of the
phase diagram turns out to be important for the estimation of the excess undercooling buildup at
the interface.

Phase-field model. In order to be able to track the interface dynamics, and particularly the region
of connection of the three phases (liquid and two solid phases), we initially chose the phase-field
method. The governing equations were formulated using two phase-field parameters, functions
of temperature and concentration. First, the necessary accuracy in the calculations of the
concentration in the bulk of the phases was achieved in one dimension and one solid phase,
providing the correct solution for the interfacial region. A fluctuating freezing rate and
concentration ahead of the interface were obtained as a response to a temperature fluctuation at
the edge of the thermal boundary layer. The concentration also lags behind the interface velocity
fluctuation as in the one-sided model. A simple lamellar eutectic structure was recovered in a
constant temperature gradient. The interface shape and the composition field ahead of the
interface are in agreement with Jackson-Hunt speculations [12].

INTRODUCTION

In studying the influence of a fluctuating freezing rate on MnBi/Bi eutectic solidification,
a series of experiments were accomplished at Clarkson [13]. Fu and Wilcox [14-16] studied heat
transfer in the Bridgman-Stockbarger technique with a sudden change in translation rate. Both



experimentally and theoretically they showed that that the freezing rate does not immediately
equal the new translation rate, but rather approaches it asymptotically. In such a situation, the
microstructure of MnBi/Bi eutectic always corresponded to the instantaneous freezing rate, i.e.
the microstructure adapted more quickly than heat transfer allowed the freezing rate to change.

When the freezing rate V increases, the system wants the MnBi fiber spacing A to
decrease in order to maintain A*V constant. In fiber eutectics, this probably occurs by branching
of existing fibers, perhaps by nucleation of another orientation. Because MnBi is faceted,
branching seems to occur with considerable difficulty. Consequently, we hypothesize that the
microstructure lags behind the velocity change until the freezing rate begins to decrease. With a
decreasing freezing rate, the system wants A to increase. This is probably accomplished by the Bi
matrix growing around and pinching off fibers. Apparently, in the Mn-Bi system this occurs
more readily than does branching. The net effect of this mechanism would be to yield a A that
always exceeds the value expected for the average freezing rate.

Regel and Wilcox [1,2] also proposed that fiber branching is easier than fiber termination
in some systems. They took as an example fibers that extend out in the melt a long distance in
front of the matrix. This could explain why, for one fibrous eutectic, A increased when
solidification was carried out in space. They observed that the above mechanism is probably not
relevant to lamellar eutectics, for which A adjusts by propagation of faults. Previous work
showed that solidification in microgravity and use of ACRT had no influence on the A of
lamellar eutectics. However, solidification is no longer at steady state when the freezing rate is
fluctuating. Consequently, the volume fractions of the two phases and their average interfacial
undercooling may depart from steady state values.

Thus, the results of Larson and Pirich are not surprising, but cannot be understood using
steady state theories. A quantitative theory of oscillatory freezing is needed for comparison with
experiment. There was no directly related prior work on this subject. There have been a number
of works on the morphological stability of lamellar eutectics.

Linear analytical analyses and numerical solutions have been carried out to find out the
stability of a freezing interface subjected to perturbations. Hurle, Jakeman and Pike [17]
investigated the effect of sinusoidal temperature variations in the melt on the growth of a single-
phase crystal. They solved the concentration-diffusion and heat-conduction equations for both
solid and liquid phases in linear approximation in 1 dimension. They imposed a sinusoidal
temperature perturbation of frequency  at the edge of the thermal boundary layer adjacent to the
advancing phase boundary. The response of the temperature and concentration at the interface
was calculated. The authors showed how these quantities vary with frequency for material
parameters appropriate to metals and semiconductors.

Wilson [18] investigated the quantitative relationship between periodic variations in
growth rate and compositional inhomogeneities in single-phase crystals grown by the
Czochralski technique. Using an extension of the Burton-Prim-Slichter model, she solved
numerically the Navier-Stokes equation, the continuity equation and the diffusion equation.
These calculations indicated that the concentration cycle at the interface lags the growth rate
cycle. The general form of the parametric dependence of the phase lag was not obtained. It was
only noted that, because of the phase lag effect, the concentration profile is non-symmetric about
its maxima and minima. The time-dependent variation in concentration in the melt at the
interface was established.

Wheeler [19] also used a linear stability theory to study the effect of an oscillatory growth
rate on the morphological stability of a crystal growing from a binary alloy in 2 dimensions. The
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oscillatory component was assumed to be less than the average freezing rate, and the solute
diffusivity in solid phase much less then in liquid phase.

Until now, no calculations had been done for a eutectic system, either lamellar (2-
dimensional) or fibrous (3-dimensional), with a fluctuating freezing rate caused by temperature
oscillations in the melt.

METHODS

Analytical methods seemed to be inappropriate for this problem. Even if the governing
equations for temperature and composition fields are uncoupled, there is a time-dependent
freezing rate, which makes the problem non-linear. A numerical solution can be compared either
with simplified analytical models or with an order-of-magnitude analysis.

One-sided sharp interface model

The choice of a numerical method to solve this problem is based mainly on the results
one wants to accomplish. For moving interface problems, the dilemma is in the interface
approximation. If only the bulk of the phase is of interest, then the interface is approximated by a
surface (line in a 2-dimensional case) in the mathematical sense, i.e. with zero width. The
equations in the bulk can be easily discretized even in a very complicated geometry. Domain
decomposition methods have been extensively used to study the cellular growth problem [20,21].
However, the method still relies partially on domain transformation (mapping), which is hardly
applicable for highly contorted interfaces. The effectiveness of the method is diminished by the
necessity of periodic reconnection of grids and consequent interpolations, which may result in
numerical diffusion. Their formulation is akin to the method proposed by Shyy er al. [22]. A
deficiency in these methods is their inability to describe the interface. The dynamics of the
interface is controlled only by the change of field variables in the bulk, but not at the interface
itself.

We consider a system of two-dimensional elliptic equations which describe the evolution
of concentration and temperature field in three-phase two-component media. Having assumed
that in the solid phases the thermal diffusivities are equal and the mass diffusivities 0, we end up
with a system of three differential equations describing concentration evolution in the liquid
phase and temperature evolution in the solid and liquid phases. Here, we are assuming that the
solid/liquid interface is planar for each phase, but the phases can have different kinetics of
propagation. Initially, for simplicity we assumed that the growth velocity is the same for both
phases. The interface propagates in the z-direction, with the x-direction being the direction of
eutectic structure periodicity. The equations are coupled by means of boundary conditions
applied at the propagating solid/liquid interface.

The relevant physical scaling for this problem, where the mass diffusion plays an
important role, can be assessed by introducing the average growth rate Vg, mass diffusivity D and
eutectic structure parameter:

_D _A - D o %5 solid
ISy v X=X t=t—V—2 ; Le=3L ;i N={q, (1)
° 0 1 liquid
_2D _ |0, lamellar structure
- m S {l, rod structure

The non-dimensional equations then have the form:
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Since the thermal and mass boundary layers are quite different for growth from the melt, we use
a transformation of variables. This is done in order to be able to distinguish the weak variations
of solute concentration at the interface and to have the whole thermal boundary layer in the
computational domain without increasing the number of computational elements. We use the
transformation:

n:l—exp(—y[f—f(?)]) ; E=X 1=t 3)
The Jacobian of the transformation has the form:
1 0 0
J=[0 y(a-m 0 4)
0 -1 1
The governing equations become
BC ) C ,0°C , 10C
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2
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at on’ 81‘[ o & d¢

where equation (5) for the temperature has to be solved in both liquid and solid phases.

One limitation of the above method is that when the interface becomes highly branched,
the generation of a boundary-conforming grid is a very difficult task. Furthermore, in the event
of topological changes, such as a merger or break-up of the growth interfaces, the boundary fitted
grid has to be rearranged. Thus, there is a need to ‘decouple’ the motion of the interface from
the grid motion.

There are three primary restrictions on interface tracking. First, there is the possibility of
fragmentation or merger of interfaces. The generation of a body-fitted grid is useless in this case.
Second, the function describing the interface needs to be obtained very accurately, since
inaccuracy leads to large errors in the first and second derivatives that are used in the domain
transformation. The boundary conditions need to be imposed at the exact location of the
interface separating the two phases.

Phase-field model

In order to be able to track the interface dynamics, and mainly the region of three phases
(liquid and two solid phases) in the eutectic solidification problem, we initially chose the phase-
field method. The general approach of the method is a non-equilibrium Cahn-Hilliard [23]
diffuse representation of the interface coupled to a diffusion equation. The ideas of Fix [24]
were to replace the dynamics of the boundary by an equation of motion for the phase-field, an
order parameter that changes from one value to another quickly but smoothly at the two-phase
interface. In other words, the phase-field model is a phenomenological model of phase
transitions that can be described by a non-conserved scalar order parameter coupled to a
conserved non-critical scalar (thermal, concentration) field(s).

The phase field ¢ is governed by a partial differential equation that guarantees that (in the
limit of infinitely thin interface region) the appropriate boundary conditions at the crystal/melt
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interface are satisfied. One solves the coupled equations for the phase field and transport
equations (temperature and/or composition). The advantage of the phase-field formulation of
solidification is that no distinction is made between the solid, liquid, and interface. This allows
the whole domain to be treated in the same way numerically. The interface is not tracked but,
rather, is given implicitly by a scalar function of space and time. This scalar function is called
the phase field parameter. This approach readily allows computation of the evolution of
interfacial structures, but at the expense of computer time. (We are immensely grateful to
Barbara Facemire for arranging the use of the supercomputer at Marshall Space Flight Center for
these computations.)
Let ¢(r,t) be the phase-field parameter, a function of the space variable r within a finite
volume, and time t. Its evolution equation in the Ginzburg-Landau approach is:
o 1 (5F(¢)]

o 7\ o ©

where T is an interface kinetic coefficient and F is the Helmholtz free energy. This equation sets
the microscopic time scale for order-parameter relaxation and assumed to be independent of ¢.
Hereafter, we assume that there is no volume change in the system subjected to the phase
transition dynamics. Everything holds at constant pressure.

The free energy is chosen to have two minima, corresponding to two definite phases at
equilibrium. It is represented by the Cahn-Hilliard [23] term g(¢) and a non-equilibrium driving
term fo(¢), which is the bulk free energy density and is phase-dependent:

F@)= | [Te@)+ £, @) )

The term g(¢) is given by the Taylor expansion about the free energy density of the uniform
phase-field in an isotropic medium:

2
2() = g,(9) +-“'2—<V¢>2 8)

Therefore, the representation of the free energy density in the Cahn-Hilliard form (23) reveals
that the free energy density can be expressed as the sum of two contributions: one for the
homogeneous phase and the other (gradient energy) as a function of the local properties. The
local form of go must have two quadratic minima, corresponding to the two different phases, i.e.
the two different values of ¢. We took ¢ in the minima to be (-1,1). In this case, g; is defined by
go(P)=(1/4) W (1-(1)2)2 in the Landau-Ginzburg model. The form of gy is a double-well potential,
as used by Cahn and Hilliard.

For a eutectic alloy we must choose another phase field parameter to be able to differ not
only between solid and liquid, but also between the two solid phases [25]. The phases are
defined in such a way that:

O — phase ¢=-1 v =1
B — phase ¢p=-1 v =-1 9)
liquid phase o=1 W — undefined

We let the mole fraction of component-1 in the parent phase 2 be x. The free energy
density of the solution was taken to be phase- and composition-dependent. It describes the
change in free energy density in the range of two pure components at thermodynamic equilibrium
(solid or liquid phase):
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where h(¢), h(y), g(¢) and g(y) are polynomial functions of the phase-field. In equation (10), R
is the universal gas constant and vy, is the molar volume (assumed to be constant and the same
for both components. The first term is the free energy density associated with the mixing of two
components assuming an ideal solution. The F in the second two terms are associated with the
energy density due to individual Helmholtz free energy density of the pure components:

FA(T) = AHI[I—E);F{%T) = AH{I—ZJ (1)

T T,
where AH; is the latent heat (enthalpy of fusion) of pure component i and T; is its melting point.
We also assumed for simplicity that the interface properties, i.e. the interface free energy ¢ and
the effective width 6 of the interface are weak functions of composition. This means that the
phase-field parameters are also independent of composition field. The same concerns the
relaxation parameter T. The phase-field parameters, € and W, and the relaxation parameter 1, are

related to the interfacial energy o, the interface thickness 8, and the interface mobility i by:

V306 36 3J206T

E=—=W=—i1 12
) 8uT, (12)

W2

For simplicity, we used the relaxation parameter at the eutectic temperature T=Tg. The free
energy difference between the phases (for pure solids) is in the excess free energy of phase
transformation, and is directly related to the latent heat. The evolution equations for the phase
field, composition and enthalpy are given by:

I _ 1 [_l SF (9., x, T)}

o T| T 50
v _1[_18F@.y.xT)
ot —"i: T 5W
(13)
oH |
—=-ViK | —
o]
* —V{M x(1-x)- V{Au«b, V. x, T)]}
ot R T

where 7 =1/T,, H is the enthalpy, D(¢) is the mass diffusivity of the two component solution,
and K(¢,y) is the thermal conductivity. The values of these quantities are different for solid and
liquid, i.e. phase-dependent. However, we assumed that the thermal conductivity is the same for
both liquid and solid phases, i.e. K(¢,y) =K. On the other hand, there is a large difference
between the solute diffusivities in the solid and the liquid. This means that D depends on the
order parameter ¢. The simple form for solute diffusivity was used:

D(¢) = h(¢)Dliquid + (1 - h(¢))D:oIid (14)
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RESULTS

One-sided sharp interface model

Initially, the freezing rate has been specified. (Later we will calculate it as part of the
problem.) The temperature distribution was ignored completely, as well as its effect upon
physical parameters such as viscosity. The fluid flow through the interface due to growth was
accounted for by assuming it fluctuates about the average value. Following the Jackson—Hunt
analysis [26], the concentration at the freezing interface in the melt was averaged over the
interface area of each phase. Calculations were done for the three eutectic systems shown below.

Systems used for initial calculations with an oscillatory planar freezing front.

System Type Tew, | Xem | X, PB) | X,(B) | m,, m,, T,C|T,C
(a-B) C B | K/at.frac | K/at.frac |
Cd-Zn | lamellar | 266 | 0.266 | 0.0435 | 0.9875 312 | 419
Pb - Sn | lamellar 183 0.739 0.29 0.986 395 136 327 | 232
MnBi-Bi rod 262 0.978 ~0.5 ~1 415 218 - 271

Solution of the first equation in (5) gives the interfacial melt concentration, which varies with
time. These oscillations of concentration propagate into the bulk of the melt with decaying
amplitude. The concentration maxima do not coincide with the maxima of the freezing rate, but
lag behind, with a phase difference between the oscillations in freezing rate and in concentration.
At high frequencies, the phase difference is several orders of magnitude higher than the inverse
diffusion time defined in (1). The concentration at the interface can be averaged separately for
each solid phase, yielding results as exemplified by Figure 1.

The spatially averaged concentration along the interface can be temporally averaged by
integrating over one period of freezing rate oscillations:

2x
j C(t)-V(t)dt
C= (15)

TV([)dt

These doubly averaged concentrations reach constant values after a few periods of oscillations
(Figure 2). Similar to the one-dimensional oscillatory case, the difference between the averaged
concentration over each phase and its steady state value (without freezing rate oscillations) can
be expressed as:

AC(, 4y =€|Cy —C,,|cos(9) =€7|Cy — C g | f (@) cOs(9) (16)

where € is the amplitude of growth rate fluctuations, Cy and Cy, are the maximum and minimum
values of concentration variations respectively, ¢ is the phase lag between concentration and
freezing rate oscillations, and f(w) is a weak function of the frequency dependence. The
frequency dependence of AC according to Equation (16) is shown in Figure 3 (solid markers).
The open markers show the difference between the spatially averaged concentration (Equation
(15)) and the steady state value for each phase. The difference between these estimations is 5-
10% of the offset value, due to time averaging of the concentration oscillations.
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Figure 1. The oscillating freezing rate and the spatially-averaged melt concentrations at the o
and 3 solid phases as a result of the solution of the first equation in (5).
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The average compositional undercooling ahead of the growing phase is equal to the liquidus
slope at the eutectic point times the difference between the average composition and the eutectic.
With the freezing rate oscillations applied, the melt ahead of a phase becomes more depleted in
the growth component than in the absence of oscillations. To estimate the excess undercooling
due to freezing rate oscillations ahead of the growing phase, it is sufficient to know the liquidus
slope m; (i=0,B) and the difference of the average composition from the eutectic. Two situations
are revealed:

. IC,-Cel < ICy-Cgl and m, > m,. Since AC, ~ IC,-Cgl and AC, ~ IC,-Cgl, the excess
undercoolings AT, = AT, (Diagram I).

2. IC-Cel < IC-Cgl and m, < my. Since AC, ~ IC,-Cgl and AC, ~ IC;-Cgl, the excess
undercoolings AT, << AT, (Diagram 2).

G, G E‘a G G G
T nbﬁ/rma/ T T\m, ! my T
AT, Nar, ATy AT,

Disgram | Diagram?

The average compositional undercooling at the freezing interface varies with the oscillation
frequency, and reaches a constant value as frequency is increased. The value of the frequency at
which the undercooling becomes constant is proportional to the inverse diffusion time connected
with lateral diffusion.

Phase-field model

First, we tried to achieve the necessary accuracy in calculating the concentration in the
bulk of the phases, still providing a correct solution for the interfacial region. We solved (13) for
one solid phase only, in 1 dimension and constant temperature. Neumann boundary conditions
were imposed at the boundaries for the phase-field and mass transport equations. Dirichlet
boundary conditions were implemented for heat transport. An explicit Euler scheme was used
for time integration.

To find the equilibrium solid and liquid concentrations (exact solutions), we used the
criteria for the chemical potentials in the two-component, 2-phase system:

&% _9h

Au=uf—u§=_uf—u§ = %l TH
(7
&
:wzg:llé = fs—xs% =fL“ngLXL

xs
The first equation in (17) guarantees that at equilibrium the difference in chemical potentials
between the two components in one phase is the same as in the second phase. The second
condition is that the chemical potential for each component must be the same in both phases.
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These two equations are both necessary and sufficient for a solution to exist. Here:
/. AFy, In l-x,__ ARy,
Xg RT 1—x; RT

which represents the system of coupled nonlinear equations for xs and x.. This system can be

solved analytically [27] and results in:
-1+ exp(—AF’v'" ] (—H exp(Asz'"Jjexp{ ARy, )
RT RT RT (19)
AFyv AFv
exp ——2 |—exp —="
RT ) RT

X =
AFyv,_ AFy, Y
RT RT
The following results from the numerical computations were compared to exact solutions (19).
In the first try, the simplest form of the finite-difference approximation to the governing
equations was chosen, first-order central differencing. The first-order central difference uses the
following representations of the first and second derivatives for the composition:

2
ﬂ X T Xy, d’x X~ 2x, + X, (20)
dz  2&x df Ax®
The calculations were carried out for several values of temperature. The results are summarized

below.

(18)

X, =

€Xx

First-order central difference results

T, K Xs XL Xs XL dxs dXL k k dk
exact exact calcul. | calcul. |error% |error% | exact calcul | error
D

610 | 09772 {0.9926 | 0.9065 | 0.9678 -7.24 -2.50 1 0.984 | 0.938 | -4.85
650 ]0.8917 10.9597 |0.8350 |0.9350 -6.36 -2.57 [0.929 [0.893 | -3.89
800 |0.6249 [ 0.7936 | 0.6013 | 0.7768 -3.77 | -2.12 10787 10.774 | -1.69
1000 | 0.3278°| 0.4805 | 0.3348 | 0.4885 2.13 1.67 |1 0.682 | 0.685 | 0.47
1100 ] 0.1874 | 0.2894 | 0.2032 | 0.3105 8.43 729 10.648 |0.654 | 1.07
1150 [ 0.1176 [ 0.1858 |0.1374 | 0.2142 16.83 1529 10.633 |0.642 | 1.34
1200 [ 0.0477 | 0.0770 | 0.0746 | 0.1187 56.41 54.16 10.620 |0.629 | 1.37
1230 | 0.0056 | 0.0092 | 0.0153 |0.0246 | 173.21 | 167.39 |0.613 |0.624 | 1.83

The error estimate for x5 and x;, was made by the formula:

(calculated) _ xs(exact) xL(caIculated) _ (exact)

Xg XL

6xs = (exact) 100% 6x,_ = (exact) -100% (21)
X < >
The same formula was used for the calculation of the error in segregation coefficient k, where
(exact) (calculated)
JAC Xs e (cteulared) __ Xg 22)
T (exac) T 7 (caleulated) (
X, X,

The estimates for the solidus, liquidus, equilibrium concentrations and segregation coefficient
show relatively large errors, especially near the melting points of the pure components (600 and
1234 K).

In order to improve the accuracy of the numerical result, second order central differencing
was also implemented. The second-order central difference uses the following representations of
the first and second derivatives for the composition:
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2
dx _ X, +8x,, —8x,  +x,, d’x _-x,,+16x,, —30x, +16x,_ —x

— ; = —=z (23
dz 12Ax dz? 12Ax? 23)
These results are summarized below.
Second-order central difference results.
T,K | xg XL Xs XL dxg dxp k k dk
exact exact calcul. | calcul. |error% |error% | exact calcul | error
%

610 | 0.9772 10.9926 | 0.9656 |0.9888 | -1.19 -0.38 10984 {0977 | -0.80
650 |0.8917 | 0.9597 |0.8893 |0.9588 | -0.27 -0.09 10929 [0.928 | -0.17
800 |0.6249 | 0.7936 | 0.6240 [0.7930 | -0.14 -0.08 10.787 |0.787 | -0.06
1000 { 0.3278 | 0.4805 [0.3279 |0.4806 | 0.03 0.02 10.682 [0.682 | 0.02
1100 [ 0.1874 | 0.2894 |0.1879 |0.2902 | 0.27 0.28 0648 (0648 | O

1150 { 0.1176 | 0.1858 [0.1184 [0.1869 | 0.68 059 10.633 |0.634 | 0.08
1200 | 0.0477 | 0.0770 | 0.0487 | 0.0789 2.10 247 10620 |0.620 | 0.05
1230 | 0.0056 | 0.0092 | 0.0059 | 0.0096 | 4.64 3.91 0613 10.613 | 0.02

The accuracy of the calculations was dramatically improved, especially for temperatures close to
the melting points of the pure components. We used 300 grid points in the calculations. Any
further increase in the density of grid points seemed to be unnecessary, as seen by comparison of
the accuracy of calculations for 100, 200 and 300 grid points. Figure 4 shows how the
concentration takes equilibrium values in liquid and solid phases, satisfying equation (13) for the
phase field ¢ and concentration x for T=1000 K. Superscript ‘ini’ in the figure denotes the initial
value of solute concentration (assumed constant), and superscript ‘eq’ means the equilibrium
solution.

After equilibrium conditions had been obtained, the temperature at the solid end of the
computational domain (where ¢ = -1) was lowered, and the temperature of the liquid end was
increased. Equilibrium conditions were reached at T = 1200 K. The temperature at the solid end
was set to 1198 K, and at the hot end to 1202 K, which gave us a temperature gradient of 100
K/cm (with the length of the computational domain being 0.04 cm). This temperature gradient
had to be imposed after the transient process was over. Unfortunately, transient calculations take
a long time, so we did not obtain the equilibrium solution. The interface velocity first increases
after the temperature is relaxed, then decreases in time approximately by the law t 2. The
concentration at the interface first increases, then begins to decrease, since the freezing rate
decreases. When the concentration had almost reached the equilibrium value, the temperature at
the hot end of the domain was changed to:

T=T", -(‘;—f}(l +esin(ax)) (24)

thus specifying an oscillating temperature at the end of the computational domain. Being
coupled with the equation for the phase-field parameter and concentration, the time-dependent
temperature causes a similar response in the evolution of the phase-field parameter (Figure 5,a,c)
and concentration (Figure 5,a,b). The evolution of the phase-field parameter, which looks like a
step-function in Figure Sa, determines the dynamics of the boundary. The lines in Figures 5a,c
are moving from left to right. The space between these lines is proportional to the velocity of the
boundary. In other words, the evolution of the phase-field parameter gives the boundary velocity
in the laboratory reference frame. The concentration close to the interface increases with time,
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trying to recover the classical exponential profile ahead of a moving interface. Disregarding the
oscillations, the velocity of the moving interface first increases, when we started to lower the
temperature by the law (24). The freezing rate tends to a constant value as the concentration
profile approaches the stationary solution.

We applied the Fourier collocation and Fourier Galerkin methods to phase transition
problems in two dimensions using the phase-field model. These methods were chosen in order to
be able to describe naturally the temporal evolution of periodic structures such as eutectics. The
application to a modified Stefan problem and interphase boundary motion driven by mean
curvature were chosen because their phase-field description has received much attention from
both mathematical and computational points of view. These phase transition problems were
modeled in a two-dimensional periodic shell with no boundary conditions applied explicitly to
the governing equations. The periodicity of the structure in two dimensions allows us to
decrease the computational domain, e.g. L = ey, where Aey is the interlamellar or interrod
spacing. We have submitted a paper for publication on the Fourier collocation and Fourier
Galerkin methods in the phase-field model [27].

We applied the concepts described in Methods to two-dimensional, three-phase eutectic
solidification. Now the free energy density corresponding to the stable phases (solid and liquid)
take the form:

ft =E[xlnx+(1—x)ln(l——x)]
v, .

fe =E[xlnx+(l—x)ln(l—x)]—(AEax‘*‘Aan(l_x)) (23)

m

Vi =E[xlnx+(l—x)ln(l—x)]-—(AE’sx+AF2ﬁ(1—x))
Here F,” and F,* were derived using Maple to satisfy the eutectic composition, temperature, and
terminal solid composition of both solid phases. The free energy density for each phase at the
eutectic temperature is shown in Figure 6. The free energy densities for the solid phases are
written with respect to the liquid phase assuming constant heat capacity for all three phases. We
solved the system of equations (13) for an initial gradient of temperature between the boundaries
of computational domain in growth direction. The eutectic structure adjusts so that the growing
interface is in the region of eutectic temperature. Figure 7 shows the slow dynamics of the
eutectic structure near the equilibrium position after the temperature field was relaxed. Since the
thermal diffusivity is much larger for all phases than the mass diffusivity, the temperature field
relaxes almost instantly in the mass diffusion time scale. The B phase (dark) corresponds to
small values of concentration x, in agreement with the free-energy curves. In the liquid (gray),
the concentration takes intermediate values between the o- and B-phases. The inset of Figure 7
shows the contours of the phase-field parameter ¢ corresponding to the solid/liquid transition.
The middle contour line is $=0. The B-phase protrudes into the liquid phase farther than the o-
phase, having the larger curvature besides. Since the growth is coupled, the curvature of the -
phase tries to compensate for the large compositional undercooling which appears due to the
large composition difference (x.-x,) between the bulk liquid and B. The freezing rate slows as
the system approaches equilibrium. The phases slowly adjust their volume fractions as they
move in the temperature gradient. The interface shape and the composition field ahead of the
interface are in agreement with Jackson-Hunt speculations [26].
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phase field ¢ and concentration x at constant temperature T=1000 K.
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PLANS

One-sided sharp interface model
The one-sided model without a temperature field has several shortcomings. The velocity

of the moving boundary (the freezing rate) has to be specified. The phases cannot adjust their
relative positions. Although the increased undercooling at the interface due to freezing rate
oscillations may cause branching of fibers, since the phases are forced to freeze at the same rate,
we cannot find which process dominates: branching or termination by overgrowth of the fibers
by the matrix. The kinetic undercooling is not consistent with a specified freezing rate.

At present, we are in the process of solving the full system including heat conduction.
After the temperature field is obtained, we will set a criterion for nucleation of a branch on a
fiber. This nucleation will compete with the ability of the fiber to grow ahead of the matrix. If
small undercooling is required for nucleation, then the phase will branch and the eutectic
parameter A will change. Otherwise, one of the phases can protrude in the melt until the criterion

for constant growth rate for both phases is reached. No change in A can result in this case.

Phase-field model

In the phase-field method the steps that were undertaken for the 1-dimensional, 2-phase
model should be done for the 2-dimensional, 3-phase eutectic solidification. It may be
impossible to completely reach steady-state because the computations require enormous CPU
time. To save time, when we determine how the volume fractions adjust when the freezing rate
slowly approaches its steady value, we can perturb the freezing by switching on a fluctuating
temperature at the hot end of our computational domain. The temperature fluctuations will result
in freezing rate and concentration field fluctuations, which will change the eutectic morphology.
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DIRECTIONAL SOLIDIFICATION OF Al-Si EUTECTIC
Ramanathan Ramnarayanan

Abstract

The objective of this project is to determine the influence of convection on the
microstructure of the Al-Si eutectic. Work began in September 1997 with a literature review.
Alumina crucibles encapsulated in quartz were determined to be the most suitable for these
experiments and these materials have been purchased. Two Bridgman-Stockbarger furnaces
were investigated for use, and one was selected that will permit accelerated crucible rotation for
stirring of the melt during solidification. We are in the process of preparing the eutectic alloys
and making the growth ampoules.

INTRODUCTION

Al-Si alloys provide 90% of all shaped castings. The reason for its wide acceptance is the
attractive combination of its properties such as high corrosion resistance, low coefficient of
thermal expansion, fatigue resistance, machinability and good castability. Al-Si alloys have been
used for automotive pistons and in the aerospace industry. This system is a faceted-nonfaceted
eutectic, so hopefully an understanding of its growth behavior can be extended to other systems
of similar structure. Models and theories have been proposed relating to the growth mechanism
and effect of freezing rate and impurity modification on the Al-Si eutectic [28-34].

We will study the influence of convection during solidification on the microstructure of
the Al-Si eutectic. A Bridgman-Stockbarger apparatus was selected in which the furnace is
moved slowly downward and the ampoule can be rotated about its axis.

METHODS

We encapsulate 6mm ID alumina tubes filled with charge in a 10mm ID quartz tube after
cleaning both tubes, and alternately evacuating and backfilling with Ar+H, (10%).

The charge consists of Al-Si (12.6%) by weight. Aluminum shot of diameter 3-5 mm and
99.999% pure will be used. Aluminum contains native oxide which we propose to remove by
heating the shot with a solution containing 20g pure chromic acid powder, 35 cm’ phosphoric
acid in 1 liter at 80°C for I hr, rinsing with deionized water, drying prior to weighing, and filling
the alumina tube. Silicon contains native oxide and some surface impurities which are removed
using commercial SC1 solution, rinsing in deionized water, 10%HF for 4 min, rinsing, and
drying prior to weighing and filling the alumina tube.

RESULTS

Two Bridgman-Stockbarger apparatuses were investigated for their suitability for the
present experiments. We profiled the smaller furnace, used by Fengcui Li for MnBi-Bi, with a
K-type thermocouple placed inside a quartz tube of 10 mm ID at three different hot and cold
zone temperatures. The results stimulated the following improvements:

1. More insulation was added to the sides to reduce heat loss.
2. A top cover of Fiberfrax insulation was used during profiling to reduce heat loss.
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3. The bottom portion of the furnace was fitted with a Mullite tube and a piece of Fiberfrax to
prevent air drafts that might induce temperature variations, to prevent tilting of the ampoule, and
to reduce the chimney effect.

A larger Bridgman-Stockbarger apparatus was tested and found to be more suitable for
the planned experiments. The furnace is moved rather than the ampoule, thus reducing the
effects of mechanical vibration on the freezing process. The ampoule is held from below by a
support that can be rotated to about 100 rpm, thus permitting use of accelerated crucible rotation
to induce convection in the melt.

PLANS

A ceramic separator with a smaller diameter hole may be placed between the top and
bottom furnaces constituting the Bridgman-Stockbarger apparatus, in order to provide better
control of the freezing interface position. A temperature profile will be obtained by insertion of a
thermocouple from above. A support for the growth ampoule will be fabricated from quartz.
The Al-Si mixture will be mixed by heating in the growth furnace to above the eutectic
temperature, and applying accelerated crucible rotation for a day prior to beginning a
solidification run.

After choosing suitable control settings for the top and bottom furnaces, we will grow the
eutectic at different growth rates, with and without application of accelerated crucible rotation.
The microstructure will be determined by optical microscopy and scanning electron microscopy.
The microstructure will be analyzed by commercial image processing software like Adobe
Photoshop ® and HLImage++97®.
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